Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Open Vet J ; 14(1): 525-533, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633189

RESUMO

Background: 5-fluorouracil (5-FU) is an antimetabolic agent used for treating slowly growing solid tumors like breast and ovarian carcinoma. Thymoquinone (TQ) is the main biologically active constituent of Nigella sativa, it has been found to demonstrate anticancerous effects in several preclinical studies, and this is because TQ possesses multitarget nature. Stem cells-derived exosomes are in the spotlight of research and are promising tissue regenerative and anticancer cell-derived nanovesicles. Aim: Herein, we studied the antineoplastic effects of Exosomes derived from mammary stem cells (MaSCs-Exo) on breast cancer cells, alone or combined with TQ when compared to a breast cancer chemotherapeutic agent; 5-FU. Methods: Our approach included performing viability test and measuring the expression of pro-apoptotic gene (Bax), anti-apoptotic gene (BCL-2) and angiogenic gene (VEGF) on Human MCF-7 cells (breast adenocarcinoma cells), the MCF-7 cells were cultured and incubated with medium containing 5-FU (25 µg/ml), TQ (200 µg/ml), MaSCs-Exo (100 µg protein equivalent), a combination of TQ (200 µg/ml) and MaSCs-Exo (100 µg). Results: Our obtained results show that TQ and MaSCs-Exo each can effectively inhibit breast cancer cell line (MCF-7) proliferation and growth. Also, the results show that the combination of TQ and MaSCs-Exo had higher cytotoxic effects on MCF-7 breast cancer cells than TQ or 5-FU, alone. Conclusion: The present study shows a promising anticancer potential of exosomes isolated from mammary stem cells; this effect was potentiated by adding TQ with MaSCs-derived exosomes.


Assuntos
Antineoplásicos , Benzoquinonas , Neoplasias da Mama , Exossomos , Humanos , Animais , Feminino , Neoplasias da Mama/veterinária , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Exossomos/metabolismo , Exossomos/patologia , Linhagem Celular Tumoral , Células-Tronco/metabolismo , Células-Tronco/patologia
2.
Int J Pharm ; 647: 123511, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37839495

RESUMO

Colorectal cancer (CRC) is one of the most identified and deadly malignancies worldwide. It presents a serious challenge due to its quick growth, which finally culminates in severe malignancy. It is critical to improve the efficacy of berberine (BR) as an anticancer agent to overcome its limited bioavailability. Implementation of a novel, effective nanocarrier system of liponiosomes for BR (LipoNio.BR) can support mechanistic actions associated with its anti-CRC role. Following CRC induction in rats using 1,2 Dimethylhydrazine (40 mg DMH/kg/week), the potency and mechanistic actions of LipoNio.BR were assessed by evaluating the lesion severity and molecular mechanisms controlling oxidative stress, apoptosis, autophagy, and inflammatory responses, and conducting histopathological and immunohistochemistry examinations of colonic tissues. The results indicated that the severity of clinical signs comprising weight gain loss, increased diarrhea and rectal bleeding, and reduced survivability were greatly restored in the LipoNio.BR-treated group. LipoNio.BR remarkably reduced CRC development compared to FBR (free berberine), as it induced apoptosis via upregulating apoptotic genes (Bax and caspase3, increased up to 7.89 and 6.25-fold, respectively) and downregulating the anti-apoptotic gene Bcl-2 by 2.25-fold. LipoNio.BR mitigated the oxidative stress associated with CRC and maintained redox homeostasis. Notably, the excessive inflammatory response associated with CRC was prominently reduced following administration of LipoNio.BR [which decreased iterleukin (IL-B, IL-6), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), proliferating cell nuclear antigen (PCNA), follistatin, and activin BA (beta-A) expression]. LipoNio.BR modulated the expression of nuclear factor kappa B (NF-κB) and mammalian target of rapamycin (mTOR), which impacted tumor vascularity (decreased Vascular endothelial growth factor (VEGF) expression by 2.36-fold). The severity of the histopathological alterations in the colonic tissues, including the development of neoplastic epithelium and the invasion of some neoplastic masses, was greatly reduced in the LipoNio.BR group compared to the FBR-(free berberine) administrated group. Following CRC induction, immunohistochemical staining revealed that the overexpression of cyclin and COX-2 in colonic tissues were suppressed in the LipoNio.BR group. Taken together, these findings suggest that LipoNio.BR has a potential role in reducing CRC progression to a greater extent compared to free BR and could be considered a promising and potent therapy against CRC.


Assuntos
Berberina , Neoplasias Colorretais , Ratos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/farmacologia , NF-kappa B/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/uso terapêutico , Apoptose , Neoplasias Colorretais/patologia , Modelos Teóricos , Mamíferos/metabolismo
3.
Front Pharmacol ; 14: 1258387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808196

RESUMO

Background: We investigated the anti-cancer effect of carnosine-loaded niosomes (Car-NIO) and melittin-loaded niosomes (Mel-NIO) with olaparib in breast cancer cell lines (MCF-7 and MDA-MB-231). Methods: The thin film method was used for preparing the niosomes and characterized in terms of morphology, size, and polydispersity index (PDI). We further evaluated the impact of these peptides on breast cancer cells viability, RT-qPCR assays, malondialdehyde (MDA) activity, and cell cycle progression, to determine if these are linked to carnosine and melittin's anti-proliferative properties. Results: Car-NIO and Mel-NIO in vitro study inhibited cancer cell viability. They have also upregulated the expression of protein 53 (P53), BCL2-Associated X Protein (Bax), caspase-9, caspase-3, programmed cell death 4 (PDCD4), and Forkhead box O3 (FOXO3), while downregulated the expression of B-cell lymphoma 2 (Bcl2), poly (ADP-ribose) polymerase (PARP 1), and MicroRNA-183 (miRNA-183). The MCF-7 cells were arrested at the G2/M phase in Car-NIO, on the other hand, the MDA-MB-231 cells were arrested at the S phase. While the Mel-NIO and olaparib arrested the MCF-7 and MDA-MB-231 cells at the G0/1 phase. Conclusion: Our study successfully declared that Mel-NIO had more anti-cancer effects than Car-NIO in both MCF-7 and MDA-MB-231 breast cancer cells.

4.
Pharmaceutics ; 14(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35745756

RESUMO

Gut modulation by multi-strain probiotics (MSPs) is considered an effective strategy for treating inflammatory bowel disease (IBD). The combination of nanomaterial-based MSPs can improve their viability and resistance and can allow their targeted release in the gastrointestinal tract to be achieved. Thus, our aim is to investigate the prospective role of MSP integration into nanomaterials (MSPNPs) and the underlying molecular mechanisms supporting their application as an alternative therapy for IBD using a colitis rat model. To induce the colitis model, rats received 5% DSS, and the efficacy of disease progression after oral administration of MSPNPs was assessed by evaluating the severity of clinical signs, inflammatory response, expressions of tight-junction-related genes and NLRP3 inflammasome and caspase-1 genes, microbial composition and histopathological examination of colonic tissues. The oral administration of MSPNPs successfully alleviated the colonic damage induced by DSS as proved by the reduced severity of clinical signs and fecal calprotectin levels. Compared with the untreated DSS-induced control group, the high activities of colonic NO and MPO and serum CRP levels were prominently reduced in rats treated with MSPNPs. Of note, colonic inflammation in the group treated with MSPNPs was ameliorated by downstreaming NLRP3 inflammasome, caspase-1, IL-18 and IL-1ß expressions. After colitis onset, treatment with MSPNPs was more effective than that with free MSPs in restoring the expressions of tight-junction-related genes (upregulation of occludin, ZO-1, JAM, MUC and FABP-2) and beneficial gut microbiota. Interestingly, treatment with MSPNPs accelerated the healing of intestinal epithelium as detected in histopathological findings. In conclusion, the incorporation of MPSs into nanomaterials is recommended as a perspective strategy to overcome the challenges they face and augment their therapeutic role for treating of colitis.

5.
Biomolecules ; 12(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35625591

RESUMO

The rate of chronic kidney disease (CKD) is increasing globally, and it is caused by continuous damage to kidney tissue. With time the renal damage becomes irreversible, leading to CKD development. In females, post-menopause lack of estrogen supply has been described as a risk factor for CKD development, and studies targeting post-menopause CKD are scarce. In the present study, we used exosomes isolated from bone marrow mesenchymal stem/stromal cells (BM-MSCs) to test their therapeutic potential against the development of CKD. At first, the menopause model was achieved by surgical bilateral ovariectomy in female albino rats. After that, 100 µg of exosomes was given to ovariectomized rats, and the study continued for 2 months. Changes in urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), kidney antioxidant parameters (SOD, GPx and CAT), histological changes, immunohistochemical levels of caspase 3, and the gene expression of NGAL (related to kidney damage), TGFß1 and αSMA (related to fibrosis and EMT), and caspase 3 (related to apoptosis) were studied. After the ovariectomy, the occurrence of CKD was confirmed in the rats by the drastic reduction of serum estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, reduced GPx SOD, and CAT in kidney tissue, degenerative and fibrotic lesions in the histopathological examination, higher immunohistochemical expression of caspase 3 and increased expression of all studied genes. After exosomes administration, the entire chronic inflammatory picture in the kidney was corrected, and a near-normal kidney structure and function were attained. This study shows for the first time that BM-MSCs exosomes are potent for reducing apoptosis and fibrosis levels and, thus, can reduce the chronic damage of the kidneys in females that are in their menopause period. Therefore, MSCs-derived exosomes should be considered a valuable therapy for preserving postmenopausal kidney structure and function and, subsequently, could improve the quality of females' life during menopause.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Animais , Apoptose , Caspase 3/metabolismo , Estrogênios/metabolismo , Exossomos/metabolismo , Feminino , Fibrose , Rim/patologia , Pós-Menopausa , Ratos , Insuficiência Renal Crônica/metabolismo , Superóxido Dismutase/metabolismo
6.
Sci Rep ; 12(1): 5116, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332200

RESUMO

Promising therapy is needed for treating inflammatory bowel diseases (IBD) to overcome current treatment that inefficient and associated with unnecessary health risks. Recently, the concept of incorporating natural products into nanocarriers has been intended as a promising therapy for treating IBD via modulating their stability and bioavailability. Thus, we aimed to explore the potential alleviating effects of dietary nano-supplement combined with bacillus strains (Bacillus amyloliquefaciens; BANPs) in colitis model. Rats were orally gavaged by 5% DSS and the efficacy and mechanistic actions of BANPs were evaluated by assessing the severity of clinical signs and inflammatory and apoptosis response, histopathological and immunohistochemistry examination in colonic tissues. The severity of clinical signs was successfully alleviated and fecal Lcn-2 levels, an important colitic marker, were decreased in BANPs then free BA treated groups. In contrast, inflammatory markers overexpression IL-6, IL-1ß, TNFα, COX-2, and iNOS in the colitic group were reduced more prominently in BANPs treated group, unlike free BA. The amelioration of BANPs to colon injury was also correlated with oxidative stress suppression along with restoring total antioxidant capacity. Interestingly, BANPs treatment modulated apoptotic markers as proved by downregulation of cytochrome c, and caspase-3 and upregulation of Bcl-2 and Bax than free BA. The severity of the histopathological alterations in the colon was greatly reduced in BANPs than free BA groups. Remarkably, over-expression of ki67 and IL-6 in colonic tissues were suppressed in BANPs group. These findings together highlighted the beneficial efficacy of BANPs in IBD treatment which are evidenced by colonic inflammation alleviation. Taken together, these results recommend that BANPs is a promising agent that encourages its possible therapeutic role in colitis treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Probióticos , Animais , Apoptose , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-6/metabolismo , Estresse Oxidativo , Probióticos/farmacologia , Probióticos/uso terapêutico , Ratos
7.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337154

RESUMO

Salmonella enterica serovar Typhimurium (S. typhimurium) is known for its intracellular survival, evading the robust inflammation and adaptive immune response of the host. The emergence of decreased ciprofloxacin (CIP) susceptibility (DCS) requires a prolonged antibiotic course with increased dosage, leading to threatening, adverse effects. Moreover, antibiotic-resistant bacteria can persist in biofilms, causing serious diseases. Hence, we validated the in vitro and in vivo efficacy of ciprofloxacin-loaded mesoporous silica nanoparticles (CIP-MSN) using a rat model of salmonella infection to compare the oral efficacy of 5 mg/kg body weight CIP-MSN and a traditional treatment regimen with 10 mg/kg CIP postinfection. Our results revealed that mesoporous silica particles can regulate the release rate of CIP with an MIC of 0.03125 mg/L against DCS S. typhimurium with a greater than 50% reduction of biofilm formation without significantly affecting the viable cells residing within the biofilm, and a sub-inhibitory concentration of CIP-MSN significantly reduced invA and FimA gene expressions. Furthermore, oral supplementation of CIP-MSN had an insignificant effect on all blood parameter values as well as on liver and kidney function parameters. MPO and NO activities that are key mediators of oxidative stress were abolished by CIP-MSN supplementation. Additionally, CIP-MSN supplementation has a promising role in attenuating the elevated secretion of pro-inflammatory cytokines and chemokines in serum from S. typhimurium-infected rats with a reduction in pro-apoptotic gene expression, resulting in reduced S. typhimurium-induced hepatic apoptosis. This counteracted the negative effects of the S. typhimurium challenge, as seen in a corrected histopathological picture of both the intestine and liver, along with increased bacterial clearance. We concluded that, compared with a normal ciprofloxacin treatment regime, MSN particles loaded with a half-dose of ciprofloxacin exhibited controlled release of the antibiotic, which can prolong the antibacterial effect.

8.
Free Radic Biol Med ; 182: 150-159, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35218913

RESUMO

Chronic kidney disease (CKD) is an important global disease its rates are increasing worldwide. CKD is caused by injuries to kidney tissue that exceeds the rate of regeneration, which with time lead to irreversible renal damage and CKD become evident. In females, diminished estrogen supply in the postmenopausal period is associated with greater risk for developing CKD. In this study we isolated exosomes from bone marrow mesenchymal stem/stromal cells (BM-MSCs) and tested their therapeutic effects on post-menopause CKD (PM-CKD) and compared their effects with BM-MSCs. The menopause model was achieved by bilateral ovariectomy in 8-months-old female albino rats, then no treatment, 2 million BM-MSCs or 100 µg of exosomes (Exo) was given intravenously in tail vein to ovariectomized rats and the study continued for 8 weeks post-ovariectomy. Changes in weight, urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), Kidney oxidative stress (MDA), kidney antioxidant parameters (SOD, GPx and CAT), histopathological changes, immunohistochemical expression of KIM-1 and, finally, genes related to renal damage (peroxiredoxin-3, KIM-1 and ICAM-1) and inflammation (TNF-α, Cox2 and IL-6) were recorded for all study groups. Post-ovariectomy there was an increased body weight, drastic reduction of estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, increased MDA and reduced GPx SOD, and CAT in kidney tissue, chronic inflammation, degenerative and fibrotic lesions in histopathological examination, high expression of KIM-1 immunohistochemically and changes in gene expression analyses all pointing to the development of CKD in the study rats. In the PM-CKD groups receiving BM-MSCs or Exo, the whole chronic inflammatory picture was completely reversed towards a much normal kidney structure and function. The improvements were more observable with Exo compared to BM-MSCs. Overall, our results show for the first time that exosomes isolated from BM-MSCs are more potent in reducing chronic inflammatory changes in the kidney of postmenopausal females compared to the cell-based approach using BM-MSCs. Therefore, MSCs-derived exosomes are a promising therapeutic approach for preserving postmenopausal kidney structure and function and, subsequently, should improve the quality of life of postmenopausal females.


Assuntos
Exossomos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Exossomos/metabolismo , Feminino , Inflamação/metabolismo , Rim/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Pós-Menopausa , Qualidade de Vida , Ratos
9.
Aquat Toxicol ; 242: 106054, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923218

RESUMO

Contamination of aquatic systems with heavy metals (HM) is of great concern owing to their deleterious impact on living organism. The current research is focused on application of silica particles with new functionalized properties (magnetic silica; SiMag or Nanoporous silica; SiNPs) and their efficacy to mitigate lead (pb) toxicity in Nile tilapia. One thousand fingerlings were distributed: two control groups (negative; without pb toxicity (NC) positive (with pb toxicity) and other four groups received two silica sources (SiMag or SiNPs) with two levels (400 and 600 mg/kg diet) for 56 days then exposed to pb for 30 days. Before toxicity exposure, maximum growth, and most improved feed conversion ratio and biochemical parameters were noticed with higher SiMag or SiNPs levels. Serum antioxidant enzymes and their transcriptional levels in muscle and liver were boosted in groups received SiMag or SiNPs. After toxicity exposure, hematological and antioxidants biomarkers maintained at adequate levels in SiMag or SiNPs. Prominent reduction of residual pb in gills, liver, kidney, and muscle was observed in SiNPs then SiMag groups. Interestingly, the maximum down-regulation of P450, caspase-3 and HSP-70 and MT were observed in groups received 600 mg/kg diet of SiMag or SiNPs. The higher level of P53 in liver and gills was detected in PC, inversely reduced in SiMag or SiNPs. Severity of the histopathological alterations in examined organs greatly reduced in groups received SiMag or SiNPs, unlike it were induced in PC group. In conclusion, higher SiMag or SiNPs levels not only mitigate negatives impact of pb toxicity in fish but also ensure its safety for human consumption.


Assuntos
Ciclídeos , Chumbo , Nanopartículas , Dióxido de Silício , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Apoptose , Bioacumulação , Ciclídeos/metabolismo , Chumbo/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Cells ; 10(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572126

RESUMO

Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-ß1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-ß1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.


Assuntos
Autofagia , Doença Hepática Crônica Induzida por Substâncias e Drogas/prevenção & controle , Células-Tronco Mesenquimais/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Smad/metabolismo , Transplante de Células-Tronco/métodos , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antineoplásicos/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Cisplatino/toxicidade , Feminino , Masculino , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Proteínas Smad/genética , Fator de Crescimento Transformador beta1/genética
11.
Gene ; 803: 145895, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34384862

RESUMO

The expression profile of early B-cell factor (Ebf) genes and loss of function experiments denote a crucial role for these genes during the late stage of skeletogenesis. However, little is known regarding the expression and function of these genes during the early stage of skeletogenesis. Therefore, this study aimed to detail the spatiotemporal expression pattern of cEbf1, in comparison to cEbf2 and cEbf3, in chick limb buds and investigate its function during chondrogenesis. cEbf1-3 were co-expressed in the distal mesenchyme from a very early stage and later in the outer perichondrium and the surrounding noncartilaginous mesenchymal cells. Ebf1 loss of function through injection of RCASBP virus-carrying Ebf1 dominant-negative form (ΔEbf1) into the wing buds resulted in shortened skeletal elements with a clear defect in the chondrocyte differentiation program. In RCASBP-ΔEbf1 injected wing, the chondrogenesis was initiated normally but hindered at the maturation stage. Subsequently, the chondrocytes failed to become mature or hypertrophic and the long bone diaphysis was not properly developed. The final phenotype included shorter, thicker, and fused long bones. These phenotypic changes were associated with downregulation of the early [Sox9 and collagen type II (Col2a1)] and the late [alkaline phosphatase (AP)] chondrocytes differentiation markers in the limb buds. These results conclude that cEbf1 could be involved in a molecular cascade that promotes the terminal stages of chondrogenesis in the long bone anlagen.


Assuntos
Botões de Extremidades/crescimento & desenvolvimento , Transativadores/genética , Transativadores/metabolismo , Animais , Embrião de Galinha , Condrogênese , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/metabolismo , Fenótipo
12.
Animals (Basel) ; 11(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206912

RESUMO

Appropriate skeletal muscle development in poultry is positively related to increasing its meat production. Synthetic peptides with growth hormone-boosting properties can intensify the effects of endogenous growth hormones. However, their effects on the mRNA and miRNA expression profiles that control muscle development post-hatching in broiler chicks is unclear. Thus, we evaluated the possible effects of synthetic growth hormone-boosting peptide (GHBP) inclusion on a chicken's growth rate, skeletal muscle development-related genes and myomiRs, serum biochemical parameters, and myofiber characteristics. A total of 400 one-day-old broiler chicks were divided into four groups supplied with GHBP at the levels of 0, 100, 200 and 300 µg/kg for 7 days post-hatching. The results showed that the highest levels of serum IGF-1 and GH at d 20 and d 38 post-hatching were found in the 200 µg/kg GHBP group. Targeted gene expression analysis in skeletal muscle revealed that the GHBP effect was more prominent at d 20 post-hatching. The maximum muscle development in the 200 µg/kg GHBP group was fostered by the upregulation of IGF-1, mTOR, myoD, and myogenin and the downregulation of myostatin and the Pax-3 and -7 genes compared to the control group. In parallel, muscle-specific myomiR analysis described upregulation of miR-27b and miR-499 and down-regulation of miR-1a, miR-133a, miR-133b, and miR-206 in both the 200 and 300 µg/kg GHBP groups. This was reflected in the weight gain of birds, which was increased by 17.3 and 11.2% in the 200 and 300 µg/kg GHBP groups, respectively, when compared with the control group. Moreover, the maximum improvement in the feed conversion ratio was achieved in the 200 µg/kg GHBP group. The myogenic effects of GHBP were also confirmed via studying myofiber characteristics, wherein the largest myofiber sizes and areas were achieved in the 200 µg/kg GHBP group. Overall, our findings indicated that administration of 200 µg/kg GHBP for broiler chicks could accelerate their muscle development by positively regulating muscle-specific mRNA and myomiR expression and reinforcing myofiber growth.

13.
Sci Rep ; 11(1): 7742, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833292

RESUMO

The present study involved in vivo evaluation of the growth promoting effects of thymol and thymol nanoemulsion and their protection against Salmonella Typhimurium infection in broilers. One-day old 2400 chicks were randomly divided into eight groups; negative and positive control groups fed basal diet without additives and thymol and thymol nanoemulsion groups (0.25, 0.5 and 1% each). At d 23, all chicks except negative control were challenged with S. Typhimurium. Over the total growing period, birds fed 1% thymol nanoemulsion showed better growth performance even after S. Typhimurium challenge, which came parallel with upregulation of digestive enzyme genes (AMY2A, PNLIP and CCK). Additionally, higher levels of thymol nanoemulsion upregulated the expression of MUC-2, FABP2, IL-10, IgA and tight junction proteins genes and downregulated IL-2 and IL-6 genes expression. Moreover, 1% thymol nanoemulsion, and to lesser extent 0.5% thymol nanoemulsion and 1% thymol, corrected the histological alterations of cecum and liver postinfection. Finally, supplementation of 1% thymol, 0.5 and 1% thymol nanoemulsion led to increased Lactobacilli counts and decreased S. Typhimurium populations and downregulated invA gene expression postinfection. This first report of supplying thymol nanoemulsion in broiler diets proved that 1% nano-thymol is a potential growth promoting and antibacterial agent.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Emulsões/química , Mucosa Intestinal/fisiologia , Nanotecnologia , Salmonella typhimurium/efeitos dos fármacos , Timol/farmacologia , Ração Animal , Animais , Ceco/microbiologia , Galinhas/fisiologia , Trato Gastrointestinal/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Timol/química , Fatores de Virulência/genética
14.
Genesis ; 57(11-12): e23339, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31724301

RESUMO

This study was conducted to check whether the three chick Early B-cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant-negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.


Assuntos
Padronização Corporal/genética , Transativadores/genética , Animais , Proteína Morfogenética Óssea 4/metabolismo , Embrião de Galinha , Galinhas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog/genética , Mesoderma/metabolismo , Notocorda/metabolismo , Somitos/metabolismo , Fatores de Transcrição/genética
15.
Complement Ther Med ; 46: 95-102, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519295

RESUMO

BACKGROUND AND AIMS: Cyclophosphamide (CPh) is a frequently used drug, in human and animals for its immunosuppressive and anticancer potential. However, it is metabolized by the liver yielding damaging toxicants (to the liver itself and other non-target vital organs) via oxidative stress, apoptosis induction and finally necrosis. Since there is no escaping of using such harmful medications, we focused on alleviating its side-effects. Panax ginseng Meyer is a potent candidate, and we still lack adequate information on its hepatoprotective role against cyclophosphamide-induced liver-damage. METHODS: Here, we used P. ginseng (Korean Red Ginseng) compared to vitamin-E (natural antioxidant) in combating CPh-induced liver damage. Forty-eight albino rats were divided into 6 groups, Control, Ginseng, Vitamin E, Cyclophosphamide (CPh), CPh + Ginseng or CPh + Vitamin-E. Blood samples were taken for biochemical analyses and liver samples were collected for histopathology, oxidative stress evaluation, and gene expression analyses. RESULTS: In CPh group, typical CPh-liver damage was evident (higher levels of AST, ALT, ALP; lower albumin and total proteins levels; lower liver tissue concentrations of SOD, GPX and CAT and higher MDA; injured liver histopathological picture; and finally increased TNF-α, IL-1ß and Caspase3 and decreased BCL-2 genes expression). All these were abolished with either P. ginseng or vitamin-E administration. However, P. ginseng was overall superior to vitamin-E, especially in restoring blood biochemical findings and damaged histopathological picture. CONCLUSIONS: Therefore, P. ginseng is a potent hepatoprotector (vitamin-E to a lesser extent) and should be considered where liver damage is expected secondary to damaging medications; as cyclophosphamide.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ciclofosfamida/efeitos adversos , Fígado/efeitos dos fármacos , Panax/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Vitamina E/farmacologia , Animais , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Interleucina-1beta/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/química , Ratos , Fator de Necrose Tumoral alfa/metabolismo
16.
Theriogenology ; 126: 230-238, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590244

RESUMO

Expression of myostatin (MSTN, also known as growth differentiation factor 8, GDF8) was recently detected in cumulus-oocytes complexes (COCs), however little is known about its role in in vitro maturation (IVM) and fertilization (IVF) in large animals. Therefore, this study was designed to investigate the effect of MSTN inhibition on IVM of buffalo oocytes through investigation of IVM efficiency and expression of some specific genes in COCs from IVM till subsequent developmental stages following IVF. To reach this goal, we prepared a construct of adeno-associated virus (AAV) carrying MSTN pro-peptides (AAV-MSTNP) to inhibit MSTN. Over-expression of MSTNP was verified by upregulated expression of MSTNP and downregulated expression of the TGFß receptor ActRIIb, the TGFß signal transducer SMAD2 in COCs using qPCR. Microinjection of AAV-MSTNP to oocytes before IVM yielded a significant decrease in maturation rate as revealed by less cumulus cells expansion, fewer oocytes reaching metaphase II, and downregulation of cumulus expansion-related genes pentraxin 3 (Ptx3) and prostaglandin-endoperoxide synthase 2 (Ptgs2) as compared to the control and vehicle groups. These changes were also accompanied by elevated intracellular reactive oxygen species (ROS), upregulated expression of the apoptotic Bax gene, reduced antioxidant enzymes (SOD, CAT, GPX) activities, and downregulated expression of the antioxidant gene nuclear factor erythroid 2 like 2 (Nrf2), and the anti-apoptotic gene Bcl2 in COCs after IVM. Overexpression of MSTN inhibitor, MSTNP, also inhibited GDF9 and BMP15 genes expression in COCs. Additionally, both the fertilization efficiency and cleavage and blastocyst rates were significantly lower in MSTNP group than in the control and vehicle groups. The obtained data suggest an important role for MSTN during IVM and the subsequent developmental stages probably through, at least in part, inhibition of ROS production and apoptosis and modulation of IVM-related gene expression in COCs.


Assuntos
Búfalos/embriologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Miostatina/fisiologia , Oócitos/crescimento & desenvolvimento , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Fertilização in vitro/veterinária , Regulação da Expressão Gênica no Desenvolvimento , Microinjeções , Miostatina/antagonistas & inibidores , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Stem Cells Int ; 2018: 8058979, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30224923

RESUMO

Cross talk, mediated by exosomes, between normal stem cells and cancer stem cells (CSCs) in the tumor microenvironment has been given less attention so far. In addition, no publications are available in the literature that address the in vivo impact of exosomes derived from CSCs and mesenchymal stem cells (MSCs) on progression of long-term hepatocellular carcinoma (HCC). Herein, we hypothesized that transfer of exosomes among the cells in the HCC microenvironment could either induce or inhibit tumor growth and metastasis depending on their source. To check this hypothesis, we investigated the effect of exosomes coming from two different stem cell populations, hepatic CSCs and bone marrow (BM) MSCs, on progression of long-term DEN-induced HCC in rats and the involved underlying mechanisms. CSCs-exosomes induced a significant increase in liver relative weight and serum levels of cancer markers (AFP and GGT) and liver enzymes (ALT, AST, and ALP), intensive immunostaining for the HCC marker GST-P, and an increased number and area of tumor nodules as compared to HCC rats injected by PBS. CSCs-exosomes also decreased apoptosis (marked by downregulation of Bax and p53 and upregulation of Bcl2, and increased immunostaining of PCNA), increased angiogenetic activity (revealed by upregulation of VEGF), enhanced metastasis and invasiveness (indicated by upregulation of P13K and ERK proteins and their downstream target MMP9 and downregulation of TIMP1), and induced epithelial mesenchymal transition (marked by increased serum and hepatic level of TGFß1 mRNA and protein). Notably, CSCs-exosomes also elevated HCC exosomal microRNA (miR) 21, exosomal long noncoding (lnc) RNA Tuc339, lncHEIH, and the HCC lncHOTAIR and decreased liver miR122 and HCC miRs (miR148a, miR16, and miR125b). All these cellular, functional, and molecular changes were reversed following injection of BM-MSCs-exosomes. However, both CSCs- and MSCs-exosomes failed to change the elevated oxidative stress or the inhibited antioxidant activities induced by HCC. Collectively, our results revealed a tumor stimulatory effect (induction of tumor growth, progression, and metastasis) for exosomes derived from CSCs and an inhibitory effect for exosomes derived from MSCs. These results provide valuable insight on the effect of CSCs- and MSCs-exosomes on HCC growth and progression in vivo, which may be helpful to understand the mechanism of HCC development.

18.
Biomed Res Int ; 2017: 1061589, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626751

RESUMO

Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs) compared to the conventional mouse embryonic fibroblasts (MEFs) were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2), cytokeratin-8 (KRT8), and interferon tau (IFNT). The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17ß-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell's growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.


Assuntos
Técnicas de Cultura de Células/métodos , Células Alimentadoras/citologia , Fibroblastos/citologia , Células da Granulosa/citologia , Trofoblastos/citologia , Animais , Bovinos , Técnicas de Cocultura/métodos , Células Alimentadoras/metabolismo , Feminino , Fibroblastos/metabolismo , Células da Granulosa/metabolismo , Camundongos , Suínos , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA